Asymptotic Properties of Least-Squares Estimates in Stochastic Regression Models
نویسندگان
چکیده
منابع مشابه
Strong consistency of least-squares estimates in regression models.
A general theorem on the limiting behavior of certain weighted sums of i.i.d. random variables is obtained. This theorem is then applied to prove the strong consistency of least-squares estimates in linear and nonlinear regression models with i.i.d. errors under minimal assumptions on the design and weak moment conditions on the errors.
متن کاملAsymptotic Properties of Nonlinear Least Squares Estimates in Stochastic Regression Models Over a Finite Design Space. Application to Self-Tuning Optimisation
We present new conditions for the strong consistency and asymptotic normality of the least squares estimator in nonlinear stochastic models when the design variables vary in a finite set. The application to self-tuning optimisation is considered, with a simple adaptive strategy that guarantees simultaneously the convergence to the optimum and the strong consistency of the estimates of the model...
متن کاملPEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION
Pedomodels have become a popular topic in soil science and environmentalresearch. They are predictive functions of certain soil properties based on other easily orcheaply measured properties. The common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. In modeling natural systems such as s...
متن کاملHigher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models
An approximation to order T 2 is obtained for the bias of the full vector of leastsquares estimates in general stable but not necessarily stationary ARX(1) models with normal disturbances. This yields generalizations, allowing for various forms of initial conditions, of Kendalls and Whites classic results for stationary AR(1) models. The accuracy of various alternative approximations is exami...
متن کاملLiu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1985
ISSN: 0090-5364
DOI: 10.1214/aos/1176349751